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Abstract—Previous work has established upper bounds on the deformations which occur in the cyclic
stationary state of a creeping structure. The present note extends the results to describe the transitional
behaviour in reaching the cyclic stationary state and also to allow non-cyclic loading. A particular form of
the upper bound is applied to experiments reported in the literature of a cylinder subjected to cyclic internal
pressure and repeated thermal shocks.

1. INTRODUCTION

The creep deformation of structures subjected to variations of temperature and external loading
is considered. For load variations below the short-term shakedown limit, Ponter(1, 2] has used a
stress history equal to the elastic stress history plus a constant self-equilibrating stress field to
provide upper bounds on the deformation of creeping structures. This method has been
extended by Ainsworth[3] to loadings beyond the shakedown limit by using a cyclic elastic-
plastic stress history. The resultant bounds[3] describe the behaviour in the cyclic stationary
state but do not consider any transient response in reaching this stationary state.

For complex components it is not simple to determine a cyclic elastic-plastic solution
particularly for hardening plastic materials and application of the previous work[3] presents
difficulties. The present note attempts to overcome this problem by deriving bounds in terms of
an elastic-plastic solution which is not necessarily cyclic. The resuits extend the previous work
by describing the transitional response in reaching a cyclic stationary state and also by allowing
non-cyclic loading. The results are still limited to simple non-interactive creep and plasticity
laws, with yield criteria of linear kinematic hardening and perfect plasticity being considered. A
particular form of the upper bound is applied to a pressurised tube to provide a comparison
with some experimental results presented by Corum et al.[4].

2. MATERIAL BEHAVIOUR
The total strain rate é; is considered as the sum of four parts

€5 = &+ Py + o5+ 6y )

where é;, Py, 5, 0; are elastic, plastic, creep and imposed (or thermal) strain rates respectively.
Elastic strains are linearly related to stress oy giving a positive-definite elastic energy density

E(oy) =1oyes V3]
A linear kinematic strain hardening model of plasticity is used with a yield criterion
foj—ap)=a, 3)

where o, is the virgin yield stress. The shift of the yield surface is related to plastic strain rate
by

dy = CPy @
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where ¢ is a positive constant assumed independent of temperature and time. Plastic strain
rates are taken normal to the yield surface which is assumed convex so that

{(g — o)~ (of —a}py =0 )

where (o} — a}) is any state satisfying inequality (3).
Creep strain rates are taken normal to the dissipation function, D,

Do) = ayby = aobed™ (il 70)g(0) 6

where n, oy, v, are constants and g(#6) is a positive function of temperature 6. The function ¢ is
convex and homogeneous of degree one in (oy/0,) reducing to the value unity for an uniaxial
stress g, Since ¢ is convex and homogeneous of degree one in stress,

n(a} - oy)v; < Dina}l(n + 1)} @)

where vy is the creep strain rate at stress o; and temperature 8 and [Xo}) is the dissipation rate
corresponding to any stress o} at the same temperature 4 (see, e.g. [1]).

3. UPPER BOUNDS

Consider a body of volume V and surface S with negligible body forces. The temperature 9
of the body and the imposad strains 9, are given functions of time, ¢, and position. The body is
subjected to a given history of loading P.(1) over part of the surface and to zero surface velocities
over the remainder of S. All deformations are assumed small so that changes in geometry can be
neglected. The material of the body has the clastic, plastic and creep properties described in
Section 2 and the stresses, strains and displacements resulting from the loading are denoted by

The behaviour of the structure is bounded below by the behaviour of the same structure
composed of material with the same elastic~plastic properties but which does not creep. For the
elastic-plastic analysis the same temperature 6 and imposed strains 6y arc used but the
meclmmllo.dmxsmaaedtoﬂ(t)+&(t)wh«cﬂnad¢nomlloads&canbecbonen
arbitrarily. Qmmfmmmeehshc—plasucamlymwmncuepmdemby
starred quantities.

From the principle of virtual work

LTLRJ(Ii:"ﬂ)det=erv(a'2}‘-a',,)(¢',,-é5)d‘/d,

where i; are displacement rates and T is some time of interest. Splitting the total strain rates
into components using eqn (1) this becomes

T . - T . .
L L&(w—u?)det =L fv(u?,‘—m,)(eg—¢?,‘+ﬁ;,-—p}$+ vy)dVde ®
since the imposed strains are identical. From inequality (5) and eqn (4)
L 1 d
(of —ouXpy - PP =< ey a;{(aﬁ - ayXa} - ay}. ©
Equation (8) then becomes on noting (2), (7) and (9)

ffRu,dexsf fRu*det-i»A(O) A(T)+-II ( )dth (10)
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where

A= f (E(0} ~ o) + Het - agXad - ap)ic} dV. ()

In general, A(T) will be unknown but since A is positive the bound (10) is still valid with
A(T) omitted. The actual displacements u; are then bounded by the initial conditions and by the
elastic-plastic solution. Consequently, a detailed analysis of the time-dependent creep defor-
mation is not required. By choice of the additional loads R; inequality (10) can provide bounds
on particular displacements, deformations or work. As in [3] the bound may be optimised by
clloice of the magnitude of the additional loading and by choice of the initial conditions o }(0),
a,»,(O).

For cyclic loading, a steady cyclic state is reached (Frederick and Armstrong(5],
Ainsworth[3]) and the quantity A of eqn (11) becomes periodic. If times 0, T are identified as
the beginning and end of a cycle in the steady cyclic state then A(0) = A(T), o is a cyclic
plasticity solution and inequality (10) reduces to the bound of [3].

For application to the problem considered in Section 4, the bound (10) is specialised by
taking R; as a constant load R so providing a bound on the displacement « in the line of R. The
actual initial state is 0/(0) = a;(0) = u(0) = 0. Optimisation for the initial state o}(0), a}(0) is not
attempted. Instead «}j(0) is taken as zero so that o}(0) is simply the stress field resulting
elastically from the load R (which is insufficient to cause yielding). The term A(T) is unknown
but can be omitted from the bound as it is positive. The term A(0) is

A0) = J’V%aﬁ(O)eﬁ(O) dV = JRu*(0)
by the principle of virtual work. The bound (10) then becomes
- . 1 . T . "
D)=k (T)- a0+ [ [ Binotiin+ niav ar a2

which can be optimised for the additional load R.

4. COMPARISON OF UPPER BOUND AND EXPERIMENT
Corum et al.[4], have reported tests on straight sections of type 304 stainless steel pipe. The
pipes were subjected to thermal shocks followed by dwell periods under internal pressure at
1100°F as shown schematically in Fig. 1. The test considered here is denoted TTTF-1 by Corum
et al.[4], and consisted of thirteen nominally identical cycles with a peak pressure of 700 psi and
a hold time of 160 hr. The temperature profiles resulting from the thermal shocks are presented
in Fig. 7 of {4} and may be represented by

8(r) = 80— A8(r - bYI(b — a)* (13)

where 6, is a constant; a, b are internal and external radii, respectively; and 6 is the

-
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Fig. 1. Nominal cycle.
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temperature at radius . The peak value of the temperature difference measured experimentally
was A@ = 175°F.

The pipe was thin-walled with a ratio of mean radius to thickness of 10.8. Consequently, the
temperature field (13) produces stress fields o, =0, and o, <o, where o, o, o, are axial,
radial and hoop stress components, respectively. For the purposes of analysis, the pipe is
represented by an uniaxial model used by Bree[6] and others. The equi-biaxial behaviour under
thermal loading is modelled by using an elastic modulus E/(1 —») and a plastic modulus 2E,
where » is Poisson’s ratio and E, E, are the elastic and plastic moduli in an uniaxial test. In the
uniaxial model the through-thickness strain is assumed constant and represents the mean hoop
strain in the pipe. An applied stress represents the hoop stress arising from the pressure. Details
of the elastic-plastic analysis are omitted as it closely follows the analysis of Bree{6] except
that the parabolic temperature field (13) replaces the linear variation used by Bree and the
pressure also varies. The numerical methods used in the elastic-plastic solution are similar to
those described by Ainsworth[7].

To calculate the upper bound a constant additional pressure R has been applied so that
inequality (12) bounds the hoop strain by the calculated strain u* in the uniaxial model and by
creep strains resulting from the calculated stress history o*. The elastic-plastic solution has
been obtained using material properties taken from Corum(8] and these are listed in Table 1.
Where necessary, mean values over the temperature range have been used. Kinematic harden-
ing behaviour has been assumed with the tenth cycle data of [8] used for all cycles except the
first when first cycle data was used. The creep contribution to the bound (12) only occurs during
the dwell periods at high temperature. During these dwell periods the elastic-plastic stress o* is

constant at any point so that f D dt over a cycle is simply the product of no*/(n + 1) and the

creep strain corresponding to no*/(n + 1) in the dwell period. Creep strains have been obtained
directly from the data presented by Corum(8). A stress index n = 2.8 fits this data for the times
and stress range of interest. The value of o* during the dwell period changes from cycle to
cycle and the total time integral required in (12) has been obtained from the sum of the cycles
using a time-hardening rule.

The value of additional pressure R which minimised the bound (12) for times greater than
160 hr (one cycle) was found to be 150 psi which is about 20% of the applied pressure of 700 psi.
However, the bound is not particularly sensitive to R and varies by less than 20% for R
between 10% and 50% of the applied pressure. A single value of R has been used although a
slightly better bound during the first cycle might have been obtained using a smaller value of R.
For loadmg below the shakedown limit, Ponter[9] has suggested that the additional loading to
minimise the upper bound is approximately given by R = {max P(#)}/n. In the present case this
gives a value R = 36% of the pressure which is greater than the optimum value but which would
still provide a reasonable bound.

The upper bound (12) is compared with the experimental resuits of Corum et al.[4] in Fig. 2.
It can be seen that the upper bound is in very good agreement with experiment. After 13 cycles the
contributions to the bound (12) are 0.17% from the creep term and 0.21% from the non-creep terms.
Thus the non-creep terms are a substantial part of the total bound during the transient stage prior to
reaching a cyclic stationary state. However for longer term applications the non-creep terms

Table 1. Material properties used in the analysis of pressurised tube

Quantity Value
Poigsson's ratio v 0.3
Elastic modulus £ 23.3 10° psi”
Plastic modulus E 0.67 106 psi

P
Product of E and the

coefficient of thermal

expansion Ea 256.7 pli/oF
First cycle yield stress 10.4 103 psi*
Tenth cycle yield streas 13.0 103 psi

*Denotes an average value over the temperature range.
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Fig. 2. Comparison of experiment and upper bound.

become less significant and reach a maximum of 0.25% whereas the creep contribution continues to
increase with time.

It should be noted that the upper bound has no allowance for the effect on material
properties of any creep-plastic interactions. However, a full analysis of the problem{10] using
the same material data[18] has shown almost exact agreement with experiment. This suggests
that any creep-plastic interactions have a negligible effect on the overall deformation in the
present case and that use of the independently obtained plastic and creep data is justified. In
general, however, the possibility of creep-plastic interactions should be considered when using
the upper bound predictions as, indeed, they should be considered in a full analysis.

5. CONCLUDING REMARKS

Upper bounds on the deformation of creeping structures operating above the short-term
shakedown limit have been extended to describe the transitional response in reaching a cyclic
stationary state and to allow the use of non-cyclic elastic-plastic solutions. Although the
bounding method requires an inelastic analysis to determine the elastic-plastic response,
detailed analysis of the time-dependent creep deformation is eliminated. The upper bound has
been shown to be in good agreement with experimental results reported in the literature for a
pressurised cylinder subjected to repeated thermal shocks.
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